

IgG4 Hinge Containing Chimeric Antigen Receptors Targeting Glypican-1 For Treating Solid Tumors

Summary

Researchers at the National Cancer Institute have developed a glypican-1 (GPC1) chimeric antigen receptor (CAR)-T cells using short immunoglobin subclass 4 (IgG4) hinge sequences that are highly potent against GPC1-expressing tumors. NCI seeks research codevelopment partners and/or licensees to advance the development of GPC1-IgG4 hinge CARs for the treatment of pancreatic cancer and other GPC1-expressing tumors.

NIH Reference Number

E-107-2020

Product Type

Therapeutics

Keywords

• Glypican-1, GPC-1, Immunoglobulin subclass 4, IgG4, Hinge, Chimeric Antigen Receptor, CAR, Single Domain Antibody, Nanobody, Cancer Therapeutic, Pancreatic Cancer, Ho

Collaboration Opportunity

This invention is available for licensing and co-development.

Contact

Abritee Dhal
NCI TTC

abritee.dhal@nih.gov (link sends e-mail)

Description of Technology

Pancreatic cancer is the fourth most common cause of cancer deaths in the U.S. The overall 5-year survival rate is 8.5%. Glypican-1 (GPC1) is a cell surface heparan sulfate proteoglycan protein overexpressed in pancreatic cancer. Due to preferential expression, GPC1 represents a potential candidate for targeted therapy for pancreatic cancer and other GPC1-expressing cancers, such as prostate.

Researchers at National Cancer Institute (NCI) developed novel Chimeric Antigen Receptors (CARs) specific for GPC1 that include short Immunoglobulin subclass 4 (IgG4) hinge sequences between the extracellular antigen recognition domain and the transmembrane domain. Hinge changes in CAR design can achieve the threshold of

antigen density required for optimal CAR-T cell activity. Significantly, the optimized GPC1-IgG4 hinge CARs have shown rapid and complete tumor regression in mouse models.

Potential Commercial Applications

- Immunotherapeutic applications for the treatment of pancreatic adenocarcinoma a significant unmet medical need
- Immunotherapeutic applications for the treatment of several GPC1-positive malignancies – including uterine cervical cancer, colorectal cancer, liver cancer, glioma, lung cancer, head and neck cancer, thyroid cancer, endometrial cancer, breast cancer and ovarian cancer

Competitive Advantages

- GPC1-targeted CAR T cells demonstrated potent antitumor efficacy in a peritoneal dissemination xenograft mouse model.
- Recombinant receptors providing both antigen-binding and T-cell-activating functions
- Likely successful targeting and lower toxicity due to high affinity of the GPC1 nanobody fragment
- Incorporation of the IgG4 hinge sequence increases the potency of the nanobody based CARs against pancreatic cancer
- CARs using the IgG4 hinge domain are available for immediate testing
- Potential immunotherapy for several cancer types with few treatment options including pancreatic adenocarcinoma and uterine cervical cancer

Inventor(s)

Mitchell Ho Ph.D. (NCI), Nan Li Ph.D (NCI), Jessica Hong M.S. (NCI)

Development Stage

• Pre-clinical (in vivo)

Patent Status

• PCT: PCT Application Number 63/065,388 , Filed 13 Aug 2020

Related Technologies

• E-028-2019 - High Affinity Monoclonal Antibodies Targeting Glypican-1

Therapeutic Area

Cancer/Neoplasm

Updated

Wednesday, January 25, 2023

Source URL:https://techtransfer.cancer.gov/availabletechnologies/e-107-2020